

BIOMASS CONVERSION COURSE

Doctoral School EPFL

Introduction

What is biomass?

• <u>Biomass:</u> Any organic, *i.e.* decomposing, matter derived from plants or animals available on a renewable basis. Includes wood and agricultural crops, herbaceous and woody energy crops, municipal organic wastes as well as manure (IEA 2012).

• <u>Biomass:</u> Any organic, *i.e.* decomposing, matter derived from plants or animals available on a renewable basis. Includes wood and agricultural crops, herbaceous and woody energy crops, municipal organic wastes as well as manure (IEA 2012).

Biomass-based energy is the oldest source of energy known to mankind, and is still today the largest source of renewable energy (10% of world total primary energy).

<u>Traditional biomass</u>: use of wood, charcoal, agricultural residues and animal dung for cooking and heating in the residential sector.

Problem: often sourced unsustainably, leading to forest degradation.

Open fires or simple stoves show very low conversion efficiency (10% to 20%) and can cause severe problems of smoke pollution, as well as black carbon emissions with considerable global warming potential.

Globally around 2.6 billion people – 40% of the world's population – still rely on traditional biomass (wood, crop residues, dung, etc.) to meet household cooking needs (IEA 2012)

Ethiopia, the Democratic Republic of Congo, Tanzania, Uganda and Bangladesh: over 90% of the population relies on these traditional cooking fuels

Indoor air pollution:

- responsible for an estimated 2 million deaths per year (WHO 2011).
- fuelwood collection can also pose risks to personal safety and keeps women and children away from school or incomeproducing work.

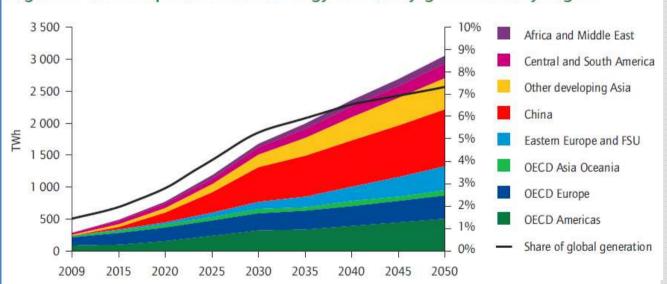
Two women cooking with firewood in Guatemala. Photo © by Rodney Rascona, used courtesy of The Paradigm Project.

Potential improvements:

Small investments (\$5 to \$8 per tCO2e) in new, more efficient biomass stoves for cooking or heating, can lead to significantly improved efficiencies.

Reduce fuel use and improve indoor **air quality**, while providing **employment** in the stoves supply chain stove

A woman uses an improved cookstove in Kenya. Photo © by Rodney Rascona, used courtesy of The Paradigm Project.

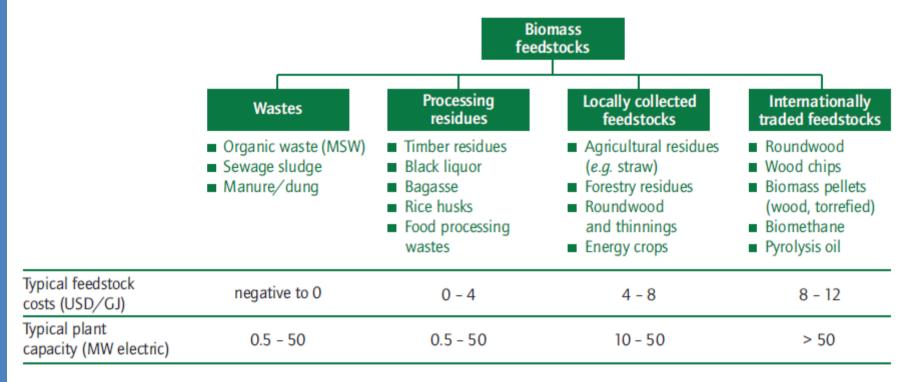


• By 2050 bioenergy could provide 3 000 TWh of electricity, *i.e.* 7.5% of world electricity generation.

Power Production

Figure 9: Roadmap vision of bioenergy electricity generation by region

Power Production Large-scale biomass combustion based plant to produce heat and power is a **mature technology**.

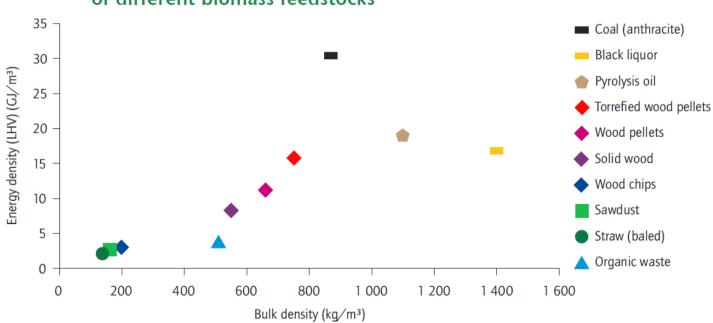

Heat generated is **competitive** with that produced from fossil fuels.

- Efficient wood log, chips, and pellet burning stoves
- Municipal solid waste (MSW) incineration
- Use of biogas plants

Figure 4: Examples of different biomass feedstocks, typical feedstock costs, and plant capacities

Property	Biomass	Coal
Fuel density (Kg/m ³)	~500	~ 1,300
Particle size	\sim 3 mm	$\sim 100 \ \mu m$
Carbon content ^a	42-54	65-85
Oxygen content ^a	35-45	2-15
Sulfur content ^a	Max. 0.5	0.5-7.5
Nitrogen content ^b	0.1 - 0.2	1.5-2.0
SiO ₂ content ^b	23-49	40-60
K ₂ O content ^b	4-48	2-6
Al ₂ O ₃ content ^b	2.4-9.5	15-25
Fe ₂ O ₃ content ^b	1.5-8.5	8-18
Ignition temperature (K)	418-426	490-595
Peak temperature (K)	560-575	8 <u>2.</u> 9
Friability	Low	High
Dry heating value(MJ/kg)	14-21	23-28

Reproduced with permission from [1]


a wt% of dry fuel

b wt% of dry ash

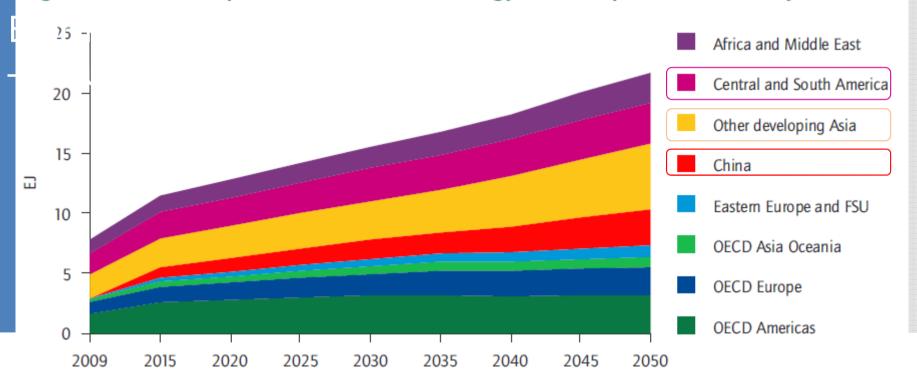
Figure 5: Comparison of bulk density and energy density of different biomass feedstocks

Source: IEA analysis based on DENA, 2011; FNR, 2011a; IEA Bioenergy, 2011; Kankkunen and Miikkulainen, 2003. For detailed data see Table 6 in Appendix I.

- Cost-effective large-scale means of converting biomass to electricity (and where suitable networks exist, to heat).
- Use of the existing infrastructure relatively minor investment in biomass pretreatment and feed-in systems.
- Higher conversion efficiencies as largescale coal plants.
- Provides an opportunity for direct carbon savings by directly reducing the volumes of coal used



- Mixing solid biomass and coal between 5%
 to 10%
- Higher co-firing rates require modifications, such as to the fuel pretreatment (milling).
- Liquid and gaseous biomass fuels such as tall
 oil (a by-product of the Kraft process of pulp
 and paper production) and biomethane can
 also be used in this way.
- Particularly interesting option, as it can be blended with natural gas.


Note: Bioenergy use in the buildings sector is for both heating and cooking. Demand for transport fuels is not shown here since this has been discussed in a previous roadmap (IEA, 2011b).

- Increase of 8 EJ in 2009 to 22 EJ in 2050
- 15% of the industrial sector's total energy

Figure 11: Roadmap vision of final bioenergy consumption in industry

